Worksheet

07/27/2020

Quick: 3333

Free on dw-math.com

Problem quickname: 3333

1)

Determine the lcm, the least common multiple, of the two numbers. Find the prime factorizations as in the example and derive the lcm.

a) The lcm of 4 and 40 is $40 = 2^3 \cdot 5$.

The prime factorizations are: $4 = 2^2$, $40 = 2^3 \cdot 5^1$.

Determination of the list of all occurring prime factors: $\{2,5\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	4	=	2^{2}	•	5^0
Second number	40	=	2^3	•	5^1
Prime factor exponent			3 > 2		1 > 0
lcm	40	=	2^3	•	5^{1}

b) The lcm of 8 and 10 is $40 = 2^3 \cdot 5$.

The prime factorizations are: $8 = 2^3$, $10 = 2^1 \cdot 5^1$.

Determination of the list of all occurring prime factors: $\{2,5\}$

Determine the lcm by selecting the highest power for each prime factor:

8	=	2^3	•	5^0
10	=	2^1	•	5^1
		3 > 1		1 > 0
40	=	2^3	•	5^{1}
	8 10 40		$ \begin{array}{rcl} 8 & = & 2^3 \\ 10 & = & 2^1 \\ \end{array} $ $ \begin{array}{rcl} & & & & & \\ & & & & & \\ \hline & & & & & \\ 40 & = & 2^3 \\ \end{array} $	$ \begin{array}{rcl} 8 & = & 2^3 & \cdot \\ 10 & = & 2^1 & \cdot \\ \hline & & & & \\ \hline & & & & \\ 40 & = & 2^3 & \cdot \\ \end{array} $

c) The lcm of 5 and 50 is $50 = 2 \cdot 5^2$.

The prime factorizations are: $5 = 5^1$, $50 = 2^1 \cdot 5^2$.

Determination of the list of all occurring prime factors: $\{2,5\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	5	=	2^{0}	•	5^{1}
Second number	50	=	2^1	•	5^2
Prime factor exponent			1 > 0		2 > 1
lcm	50	=	2^{1}	•	5^{2}

www.dw-math.com

d) The lcm of 3 and 54 is $54 = 2 \cdot 3^3$.

The prime factorizations are: $3 = 3^1$, $54 = 2^1 \cdot 3^3$.

Determination of the list of all occurring prime factors: $\{2,3\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	3	=	2^{0}	•	3^{1}
Second number	54	=	2^1	•	3^{3}
Prime factor exponent			1 > 0		3 > 1
lcm	54	=	2^{1}	•	3^{3}

e) The lcm of 8 and 12 is $24 = 2^3 \cdot 3$.

The prime factorizations are: $8 = 2^3$, $12 = 2^2 \cdot 3^1$.

Determination of the list of all occurring prime factors: $\{2,3\}$

Determine the lcm by selecting the highest power for each prime factor:

First number Second number	8 12	=	$2^3 \\ 2^2$	•	$\frac{3^0}{3^1}$
Prime factor exponent			3 > 2		1 > 0
lcm	24	=	2^3	•	3^{1}

f) The lcm of 9 and 33 is $99 = 3^2 \cdot 11$.

The prime factorizations are: $9 = 3^2$, $33 = 3^1 \cdot 11^1$.

Determination of the list of all occurring prime factors: $\{3,11\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	9	=	3^{2}	•	11^{0}
Second number	33	=	3^{1}	•	11^{1}
Prime factor exponent			2 > 1		1 > 0
lcm	99	=	3^{2}	•	11^{1}

g) The lcm of 2 and 52 is $52 = 2^2 \cdot 13$.

The prime factorizations are: $2 = 2^1$, $52 = 2^2 \cdot 13^1$.

Determination of the list of all occurring prime factors: $\{2,13\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	2	=	2^{1}	•	13^{0}
Second number	52	=	2^2	•	13^{1}
Prime factor exponent			2 > 1		1 > 0
lcm	52	=	2^{2}	•	13^{1}

www.dw-math.com

h) The lcm of 8 and 18 is $72 = 2^3 \cdot 3^2$.

The prime factorizations are: $8 = 2^3$, $18 = 2^1 \cdot 3^2$.

Determination of the list of all occurring prime factors: $\{2,3\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	8	=	2^{3}	•	3^{0}
Second number	18	=	2^{1}	•	3^{2}
Prime factor exponent			3 > 1		2 > 0
lcm	72	=	2^3	•	3^{2}

2)

Determine the lcm, the least common multiple, of the two numbers. Find the prime factorizations and derive the lcm.

a) The lcm of 8 and 78 is $312 = 2^3 \cdot 3 \cdot 13$.

The prime factorizations are: $8 = 2^3$, $78 = 2^1 \cdot 3^1 \cdot 13^1$.

Determination of the list of all occurring prime factors: $\{2,3,13\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	8	=	2^3	•	3^{0}	•	13^{0}
Second number	78	=	2^1	•	3^1	•	13^{1}
Prime factor exponent			3 > 1		1 > 0		1 > 0
lcm	312	=	2^3	•	3^{1}	•	13^{1}

b) The lcm of 2 and 352 is $352 = 2^5 \cdot 11$.

The prime factorizations are: $2 = 2^1$, $352 = 2^5 \cdot 11^1$.

Determination of the list of all occurring prime factors: $\{2,11\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	2	=	2^{1}	•	11^{0}
Second number	352	=	2^5	•	11^{1}
Prime factor exponent			5 > 1		1 > 0
lcm	352	=	2^{5}	•	11^{1}

c) The lcm of 28 and 50 is $700 = 2^2 \cdot 5^2 \cdot 7$.

The prime factorizations are: $28 = 2^2 \cdot 7^1$, $50 = 2^1 \cdot 5^2$.

Determination of the list of all occurring prime factors: $\{2,5,7\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	28	=	2^{2}	•	5^{0}	•	7^{1}
Second number	50	=	2^1	•	5^2	•	7^0
Prime factor exponent			2 > 1		2 > 0		1 > 0
lcm	700	=	2^2	•	5^2	•	7^1

www.dw-math.com

smp-3333-1/RKPP

Quick: 3333 d) The lcm of 9 and 141 is $423 = 3^2 \cdot 47$.

The prime factorizations are: $9 = 3^2$, $141 = 3^1 \cdot 47^1$.

Determination of the list of all occurring prime factors: $\{3,47\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	9	=	3^{2}	•	47^{0}
Second number	141	=	3^1	•	47^{1}
Prime factor exponent			2 > 1		1 > 0
lcm	423	=	3^{2}	•	47^{1}

e) The lcm of 2 and 732 is $732 = 2^2 \cdot 3 \cdot 61$.

The prime factorizations are: $2 = 2^1$, $732 = 2^2 \cdot 3^1 \cdot 61^1$.

Determination of the list of all occurring prime factors: $\{2,3,61\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	2	=	2^{1}	•	3^{0}	•	61^{0}
Second number	732	=	2^2	•	3^{1}	•	61^{1}
Prime factor exponent			2 > 1		1 > 0		1 > 0
lcm	732	=	2^{2}	•	3^{1}	•	61^{1}

f) The lcm of 10 and 88 is $440 = 2^3 \cdot 5 \cdot 11$.

The prime factorizations are: $10 = 2^1 \cdot 5^1$, $88 = 2^3 \cdot 11^1$.

Determination of the list of all occurring prime factors: $\{2,5,11\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	10	=	2^{1}	•	5^{1}	•	11^{0}
Second number	88	=	2^3	•	5^0	•	11^{1}
Prime factor exponent			3 > 1		1 > 0		1 > 0
lcm	440	=	2^3	•	5^{1}	•	111

g) The lcm of 4 and 350 is $700 = 2^2 \cdot 5^2 \cdot 7$.

The prime factorizations are: $4 = 2^2$, $350 = 2^1 \cdot 5^2 \cdot 7^1$.

Determination of the list of all occurring prime factors: $\{2,5,7\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	4	=	2^{2}	•	5^0	•	7^{0}
Second number	350	=	2^1	•	5^2	•	7^1
Prime factor exponent			2 > 1		2 > 0		1 > 0
lcm	700	=	2^2	•	5^{2}	•	7^{1}

www.dw-math.com

h) The lcm of 14 and 588 is $588 = 2^2 \cdot 3 \cdot 7^2$.

The prime factorizations are: $14 = 2^1 \cdot 7^1$, $588 = 2^2 \cdot 3^1 \cdot 7^2$.

Determination of the list of all occurring prime factors: $\{2,3,7\}$

Determine the lcm by selecting the highest power for each prime factor:

First number Second number	14 588	=	2^{1} 2^{2}	•	$\frac{3^{0}}{3^{1}}$	•	$7^1 \\ 7^2$
Prime factor exponent			2 > 1		1 > 0		2 > 1
lcm	588	=	2^2	•	3^{1}	•	7^{2}

3)

Determine the lcm, the least common multiple, of the two numbers. Find the prime factorizations as in the example and derive the lcm.

a) The lcm of 8 and 23 is $184 = 2^3 \cdot 23$.

The prime factorizations are: $8 = 2^3$, $23 = 23^1$.

Determination of the list of all occurring prime factors: $\{2,23\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	8	=	2^3	•	23^{0}
Second number	23	=	2^{0}	•	23^{1}
Prime factor exponent			3 > 0		1 > 0
lcm	184	=	2^3	•	23^{1}

b) The lcm of 2 and 143 is $286 = 2 \cdot 11 \cdot 13$.

The prime factorizations are: $2 = 2^1$, $143 = 11^1 \cdot 13^1$.

Determination of the list of all occurring prime factors: $\{2,11,13\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	2	=	2^{1}	•	11^{0}	•	13^{0}
Second number	143	=	2^{0}	•	11^{1}	•	13^{1}
Prime factor exponent			1 > 0		1 > 0		1 > 0
lcm	286	=	2^{1}	•	11^{1}	•	13^{1}

c) The lcm of 9 and 43 is $387 = 3^2 \cdot 43$.

The prime factorizations are: $9 = 3^2$, $43 = 43^1$.

Determination of the list of all occurring prime factors: $\{3,43\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	9	=	3^{2}	•	43^{0}
Second number	43	=	3^0	•	43^{1}
Prime factor exponent			2 > 0		1 > 0
lcm	387	=	3^{2}	•	43^{1}

www.dw-math.com

Quick: 3333 d) The lcm of 2 and 177 is $354 = 2 \cdot 3 \cdot 59$.

The prime factorizations are: $2 = 2^1$, $177 = 3^1 \cdot 59^1$.

Determination of the list of all occurring prime factors: $\{2,3,59\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	2	=	2^{1}	•	3^{0}	•	59^{0}
Second number	177	=	2^0	•	3^1	•	59^{1}
Prime factor exponent			1 > 0		1 > 0		1 > 0
lcm	354	=	2^{1}	•	3^{1}	•	59^{1}

e) The lcm of 6 and 35 is $210 = 2 \cdot 3 \cdot 5 \cdot 7$.

The prime factorizations are: $6 = 2^1 \cdot 3^1$, $35 = 5^1 \cdot 7^1$.

Determination of the list of all occurring prime factors: $\{2,3,5,7\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	6	=	2^{1}	•	3^{1}	•	5^0	•	7^{0}
Second number	35	=	2^{0}	•	3^0	•	5^1	•	7^1
Prime factor exponent			1 > 0		1 > 0		1 > 0		1 > 0
lcm	210	=	2^{1}	•	3^{1}	•	5^{1}	•	7^{1}

f) The lcm of 2 and 152 is $152 = 2^3 \cdot 19$.

The prime factorizations are: $2 = 2^1$, $152 = 2^3 \cdot 19^1$.

Determination of the list of all occurring prime factors: $\{2,19\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	2	=	2^{1}	•	19^{0}
Second number	152	=	2^3	•	19^{1}
Prime factor exponent			3 > 1		1 > 0
lcm	152	=	2^3	•	19^{1}

g) The lcm of 12 and 117 is $468 = 2^2 \cdot 3^2 \cdot 13$.

The prime factorizations are: $12 = 2^2 \cdot 3^1$, $117 = 3^2 \cdot 13^1$.

Determination of the list of all occurring prime factors: $\{2,3,13\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	12	=	2^{2}	•	3^{1}	•	13^{0}
Second number	117	=	2^0	•	3^{2}	•	13^{1}
Prime factor exponent			2 > 0		2 > 1		1 > 0
lcm	468	=	2^{2}	•	3^{2}	•	13^{1}

www.dw-math.com

h) The lcm of 2 and 217 is $434 = 2 \cdot 7 \cdot 31$.

The prime factorizations are: $2 = 2^1$, $217 = 7^1 \cdot 31^1$.

Determination of the list of all occurring prime factors: $\{2,7,31\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	2	=	2^{1}_{0}	•	7^{0}	•	31^{0}
Second number	217	=	2^0	•	7^{1}	•	31^{1}
Prime factor exponent			1 > 0		1 > 0		1 > 0
lcm	434	=	2^{1}	•	7^1	•	31^{1}

4)

Determine the lcm, the least common multiple, of the two numbers. Find the prime factorizations as in the example and derive the lcm.

a) The lcm of 3 and 27 is $27 = 3^3$.

The prime factorizations are: $3 = 3^1$, $27 = 3^3$.

Determination of the list of all occurring prime factors: $\{3\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	3	=	3^{1}
Second number	27	=	3^{3}
Prime factor exponent			3 > 1
lcm	27	=	3^{3}

b) The lcm of 5 and 9 is $45 = 3^2 \cdot 5$.

The prime factorizations are: $5 = 5^1$, $9 = 3^2$.

Determination of the list of all occurring prime factors: $\{3,5\}$

Determine the lcm by selecting the highest power for each prime factor:

First number Second number	5 9	=	$\frac{3^{0}}{3^{2}}$	•	5^1 5^0
Prime factor exponent			2 > 0		1 > 0
lcm	45	=	3^{2}	•	5^1

c) The lcm of 2 and 88 is $88 = 2^3 \cdot 11$.

The prime factorizations are: $2 = 2^1$, $88 = 2^3 \cdot 11^1$.

Determination of the list of all occurring prime factors: $\{2,11\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	2	=	2^{1}	•	11^{0}
Second number	88	=	2^3	•	11^{1}
Prime factor exponent			3 > 1		1 > 0
lcm	88	=	2^3	•	11^{1}

Quick: 3333 d) The lcm of 4 and 23 is $92 = 2^2 \cdot 23$.

The prime factorizations are: $4 = 2^2$, $23 = 23^1$.

Determination of the list of all occurring prime factors: $\{2,23\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	4	=	2^{2}	•	23^{0}
Second number	23	=	2^0	•	23^{1}
Prime factor exponent			2 > 0		1 > 0
lcm	92	=	2^{2}	•	23^{1}

e) The lcm of 3 and 26 is $78 = 2 \cdot 3 \cdot 13$.

The prime factorizations are: $3 = 3^1$, $26 = 2^1 \cdot 13^1$.

Determination of the list of all occurring prime factors: $\{2,3,13\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	3	=	2^{0}	•	3^{1}	•	13^{0}
Second number	26	=	2^1	•	3^0	•	13^{1}
Prime factor exponent			1 > 0		1 > 0		1 > 0
lcm	78	=	2^{1}	•	3^{1}	•	13^{1}

f) The lcm of 27 and 81 is $81 = 3^4$.

The prime factorizations are: $27 = 3^3$, $81 = 3^4$.

Determination of the list of all occurring prime factors: $\{3\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	27	=	3^{3}
Second number	81	=	3^{4}
Prime factor exponent			4 > 3
lcm	81	=	3^{4}

g) The lcm of 4 and 34 is $68 = 2^2 \cdot 17$.

The prime factorizations are: $4 = 2^2$, $34 = 2^1 \cdot 17^1$.

Determination of the list of all occurring prime factors: $\{2,17\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	4	=	2^2	•	17^{0}
Second number	34	=	2^1	•	17^{1}
Prime factor exponent			2 > 1		1 > 0
lcm	68	=	2^{2}	•	17^{1}

www.dw-math.com

h) The lcm of 9 and 81 is $81 = 3^4$.

The prime factorizations are: $9 = 3^2$, $81 = 3^4$.

Determination of the list of all occurring prime factors: $\{3\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	9	=	3^{2}
Second number	81	=	3^4
Prime factor exponent			4 > 2
lcm	81	=	3^4

Good Luck!