Worksheet

07/27/2020

Quick: 3333

Free on dw-math.com

Problem quickname: 3333

 $\underline{1}$

Determine the lcm, the least common multiple, of the two numbers. Find the prime factorizations as in the example and derive the lcm.

a) The lcm of 4 and 29 is $116 = 2^2 \cdot 29$.

The prime factorizations are: $4 = 2^2$, $29 = 29^1$.

Determination of the list of all occurring prime factors: $\{2,29\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	4	=	2^2	•	29^{0}
Second number	29	=	2^0	•	29^{1}
Prime factor exponent			2 > 0		1 > 0
lcm	116	=	2^{2}	•	29^{1}

b) The lcm of 4 and 112 is $112 = 2^4 \cdot 7$.

The prime factorizations are: $4 = 2^2$, $112 = 2^4 \cdot 7^1$.

Determination of the list of all occurring prime factors: $\{2,7\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	4	=	2^2	•	7^{0}
Second number	112	=	2^4	•	7^1
Prime factor exponent			4 > 2		1 > 0
lcm	112	=	2^4	•	7^{1}

c) The lcm of 5 and 51 is $255 = 3 \cdot 5 \cdot 17$.

The prime factorizations are: $5 = 5^1$, $51 = 3^1 \cdot 17^1$.

Determination of the list of all occurring prime factors: $\{3,5,17\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	5	=	3^{0}	•	5^{1}	•	17^{0}
Second number	51	=	3^{1}	•	5^0	•	17^{1}
Prime factor exponent			1 > 0		1 > 0		1 > 0
lcm	255	=	3^{1}	•	5^{1}	•	17^{1}

www.dw-math.com

d) The lcm of 24 and 38 is $456 = 2^3 \cdot 3 \cdot 19$.

The prime factorizations are: $24 = 2^3 \cdot 3^1$, $38 = 2^1 \cdot 19^1$.

Determination of the list of all occurring prime factors: $\{2,3,19\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	24	=	2^3	•	3^{1}	•	19^{0}
Second number	38	=	2^1	•	3^0	•	19^{1}
Prime factor exponent			3 > 1		1 > 0		1 > 0
lcm	456	=	2^3	•	3^{1}	•	19^{1}

e) The lcm of 20 and 25 is $100 = 2^2 \cdot 5^2$.

The prime factorizations are: $20 = 2^2 \cdot 5^1$, $25 = 5^2$.

Determination of the list of all occurring prime factors: $\{2,5\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	20	=	2^{2}_{0}	•	5^{1}_{2}
Second number	25	=	2^{0}	•	5^{2}
Prime factor exponent			2 > 0		2 > 1
lcm	100	=	2^{2}	•	5^2

f) The lcm of 8 and 416 is $416 = 2^5 \cdot 13$.

The prime factorizations are: $8 = 2^3$, $416 = 2^5 \cdot 13^1$.

Determination of the list of all occurring prime factors: $\{2,13\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	8	=	2^3	•	13^{0}
Second number	416	=	2^5	•	13^{1}
Prime factor exponent			5 > 3		1 > 0
lcm	416	=	2^{5}	•	13^{1}

g) The lcm of 9 and 111 is $333 = 3^2 \cdot 37$.

The prime factorizations are: $9 = 3^2$, $111 = 3^1 \cdot 37^1$.

Determination of the list of all occurring prime factors: $\{3,37\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	9	=	3^{2}	•	37^{0}
Second number	111	=	3^{1}	•	37^{1}
Prime factor exponent			2 > 1		1 > 0
lcm	333	=	3^{2}	•	37^{1}

www.dw-math.com

h) The lcm of 2 and 69 is $138 = 2 \cdot 3 \cdot 23$.

The prime factorizations are: $2 = 2^1$, $69 = 3^1 \cdot 23^1$.

Determination of the list of all occurring prime factors: $\{2,3,23\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	2	=	2^{1}_{20}	•	$\frac{3^0}{2^1}$	•	23^{0} 22^{1}
Second number	09	=	L	•	3	•	23
Prime factor exponent			1 > 0		1 > 0		1 > 0
lcm	138	=	2^{1}	•	3^{1}	•	23^{1}

2)

Determine the lcm, the least common multiple, of the two numbers. Find the prime factorizations as in the example and derive the lcm.

a) The lcm of 7 and 10 is $70 = 2 \cdot 5 \cdot 7$.

The prime factorizations are: $7 = 7^1$, $10 = 2^1 \cdot 5^1$.

Determination of the list of all occurring prime factors: $\{2,5,7\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	7	=	2^{0}	•	5^{0}	•	7^{1}
Second number	10	=	2^{1}	•	5^1	•	7^0
Prime factor exponent			1 > 0		1 > 0		1 > 0
lcm	70	=	2^{1}	•	5^{1}	•	7^{1}

b) The lcm of 6 and 11 is $66 = 2 \cdot 3 \cdot 11$.

The prime factorizations are: $6 = 2^1 \cdot 3^1$, $11 = 11^1$.

Determination of the list of all occurring prime factors: $\{2,3,11\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	6	=	2^{1}	•	3^{1}	•	11^{0}
Second number	11	=	2^{0}	•	3^0	•	11^{1}
Prime factor exponent			1 > 0		1 > 0		1 > 0
lcm	66	=	2^{1}	•	3^{1}	•	11^{1}

c) The lcm of 6 and 13 is $78 = 2 \cdot 3 \cdot 13$.

The prime factorizations are: $6 = 2^1 \cdot 3^1$, $13 = 13^1$.

Determination of the list of all occurring prime factors: $\{2,3,13\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	6	=	2^{1}	•	3^{1}	•	13^{0}
Second number	13	=	2^{0}	•	3^0	•	13^{1}
Prime factor exponent			1 > 0		1 > 0		1 > 0

www.dw-math.com

smp-3333-3/SKPC

Quick: 3333 d) The lcm of 6 and 28 is $84 = 2^2 \cdot 3 \cdot 7$.

The prime factorizations are: $6 = 2^1 \cdot 3^1$, $28 = 2^2 \cdot 7^1$.

Determination of the list of all occurring prime factors: $\{2,3,7\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	6	=	2^{1}	•	3^{1}	•	7^{0}
Second number	28	=	2^2	•	3^0	•	7^1
Prime factor exponent			2 > 1		1 > 0		1 > 0
lcm	84	=	2^2	•	3^{1}	•	7^{1}

e) The lcm of 9 and 27 is $27 = 3^3$.

The prime factorizations are: $9 = 3^2$, $27 = 3^3$.

Determination of the list of all occurring prime factors: $\{3\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	9	=	3^{2}
Second number	27	=	3^{3}
Prime factor exponent			3 > 2
lcm	27	=	3^{3}

f) The lcm of 2 and 36 is $36 = 2^2 \cdot 3^2$.

The prime factorizations are: $2 = 2^1$, $36 = 2^2 \cdot 3^2$.

Determination of the list of all occurring prime factors: $\{2,3\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	2	=	2^{1}	•	3^{0}
Second number	36	=	2^2	•	3^{2}
Prime factor exponent			2 > 1		2 > 0
lcm	36	=	2^{2}	•	3^{2}

g) The lcm of 3 and 27 is $27 = 3^3$.

The prime factorizations are: $3 = 3^1$, $27 = 3^3$.

Determination of the list of all occurring prime factors: $\{3\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	3	=	3^{1}
Second number	27	=	3^{3}
Prime factor exponent			3 > 1
lcm	$\overline{27}$	=	3^{3}

h) The lcm of 5 and 14 is $70 = 2 \cdot 5 \cdot 7$.

The prime factorizations are: $5 = 5^1$, $14 = 2^1 \cdot 7^1$.

Determination of the list of all occurring prime factors: $\{2,5,7\}$

Determine the lcm by selecting the highest power for each prime factor:

First number Second number	$5\\14$	=	2^{0} 2^{1}	•	5^{1} 5^{0}	•	$7^0 \\ 7^1$
Prime factor exponent			1 > 0		1 > 0		1 > 0
lcm	70	=	2^{1}	•	5^{1}	•	7^{1}

3)

Determine the lcm, the least common multiple, of the two numbers. Find the prime factorizations and derive the lcm.

a) The lcm of 3 and 142 is $426 = 2 \cdot 3 \cdot 71$.

The prime factorizations are: $3 = 3^1$, $142 = 2^1 \cdot 71^1$.

Determination of the list of all occurring prime factors: $\{2,3,71\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	3	=	2^{0}	•	3^{1}	•	71^{0}
Second number	142	=	2^1	•	3^0	•	71^{1}
Prime factor exponent			1 > 0		1 > 0		1 > 0
lcm	426	=	2^{1}	•	3^{1}	•	71^{1}

b) The lcm of 6 and 188 is $564 = 2^2 \cdot 3 \cdot 47$.

The prime factorizations are: $6 = 2^1 \cdot 3^1$, $188 = 2^2 \cdot 47^1$.

Determination of the list of all occurring prime factors: $\{2,3,47\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	6	=	2^{1}	•	3^{1}	•	47^{0}
Second number	188	=	2^2	•	3^0	•	47^{1}
Prime factor exponent			2 > 1		1 > 0		1 > 0
lcm	564	=	2^2	•	3^{1}	•	47^{1}

c) The lcm of 2 and 524 is $524 = 2^2 \cdot 131$.

The prime factorizations are: $2 = 2^1$, $524 = 2^2 \cdot 131^1$.

Determination of the list of all occurring prime factors: $\{2, 131\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	2	=	2^{1}	•	131^{0}
Second number	524	=	2^{2}	•	131^{1}
Prime factor exponent			2 > 1		1 > 0
lcm	524	=	2^2	•	131^{1}

www.dw-math.com

Quick: 3333 d) The lcm of 18 and 243 is $486 = 2 \cdot 3^5$.

The prime factorizations are: $18 = 2^1 \cdot 3^2$, $243 = 3^5$.

Determination of the list of all occurring prime factors: $\{2,3\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	18	=	2^{1}	•	3^{2}
Second number	243	=	2^0	•	3^5
Prime factor exponent			1 > 0		5 > 2
lcm	486	=	2^{1}	•	3^5

e) The lcm of 9 and 213 is $639 = 3^2 \cdot 71$.

The prime factorizations are: $9 = 3^2$, $213 = 3^1 \cdot 71^1$.

Determination of the list of all occurring prime factors: $\{3,71\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	9	=	3^{2}	•	71^{0}
Second number	213	=	3^1	•	71^{1}
Prime factor exponent			2 > 1		1 > 0
lcm	639	=	3^{2}	•	71^{1}

f) The lcm of 9 and 138 is $414 = 2 \cdot 3^2 \cdot 23$.

The prime factorizations are: $9 = 3^2$, $138 = 2^1 \cdot 3^1 \cdot 23^1$.

Determination of the list of all occurring prime factors: $\{2,3,23\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	9	=	2^{0}	•	3^{2}	•	23^{0}
Second number	138	=	2^1	•	3^{1}	•	23^{1}
Prime factor exponent			1 > 0		2 > 1		1 > 0
lcm	414	=	2^{1}	•	3^{2}	•	23^{1}

g) The lcm of 23 and 28 is $644 = 2^2 \cdot 7 \cdot 23$.

The prime factorizations are: $23 = 23^1$, $28 = 2^2 \cdot 7^1$.

Determination of the list of all occurring prime factors: $\{2,7,23\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	23	=	2^{0}	•	7^{0}	•	23^{1}
Second number	28	=	2^2	•	7^1	•	23^{0}
Prime factor exponent			2 > 0		1 > 0		1 > 0
lcm	644	=	2^2	•	7^{1}	•	23^{1}

www.dw-math.com

h) The lcm of 12 and 86 is $516 = 2^2 \cdot 3 \cdot 43$.

The prime factorizations are: $12 = 2^2 \cdot 3^1$, $86 = 2^1 \cdot 43^1$.

Determination of the list of all occurring prime factors: $\{2,3,43\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	12	=	2^2	•	3^{1}	•	43^{0}
Second number	86	=	2^1	•	3^0	•	43^{1}
Prime factor exponent			2 > 1		1 > 0		1 > 0
lcm	516	=	2^{2}	•	3^{1}	•	43^{1}

4)

Determine the lcm, the least common multiple, of the two numbers. Find the prime factorizations as in the example and derive the lcm.

a) The lcm of 2 and 203 is $406 = 2 \cdot 7 \cdot 29$.

The prime factorizations are: $2 = 2^1$, $203 = 7^1 \cdot 29^1$.

Determination of the list of all occurring prime factors: $\{2,7,29\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	2	=	2^{1}	•	7^0	•	29^{0}
Second number	203	=	2^0	•	7^1	•	29^{1}
Prime factor exponent			1 > 0		1 > 0		1 > 0
lcm	406	=	2^{1}	•	7^{1}	•	29^{1}

b) The lcm of 4 and 73 is $292 = 2^2 \cdot 73$.

The prime factorizations are: $4 = 2^2$, $73 = 73^1$.

Determination of the list of all occurring prime factors: $\{2,73\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	4	=	2^{2}	•	73^{0}
Second number	73	=	2^{0}	•	73^{1}
Prime factor exponent			2 > 0		1 > 0
lcm	292	=	2^2	•	73^{1}

c) The lcm of 13 and 20 is $260 = 2^2 \cdot 5 \cdot 13$.

The prime factorizations are: $13 = 13^1$, $20 = 2^2 \cdot 5^1$.

Determination of the list of all occurring prime factors: $\{2,5,13\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	13	=	2^{0}	•	5^{0}	•	13^{1}
Second number	20	=	2^2	•	5^1	•	13^{0}
Prime factor exponent			2 > 0		1 > 0		1 > 0
lcm	260	=	2^{2}	•	5^{1}	•	13^{1}

www.dw-math.com

smp-3333-3/SKPC

Quick: 3333 d) The lcm of 7 and 343 is $343 = 7^3$.

The prime factorizations are: $7 = 7^1$, $343 = 7^3$.

Determination of the list of all occurring prime factors: $\{7\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	7	=	7^1
Second number	343	=	7^{3}
Prime factor exponent			3 > 1
lcm	343	=	7^{3}

e) The lcm of 5 and 36 is $180 = 2^2 \cdot 3^2 \cdot 5$.

The prime factorizations are: $5 = 5^1$, $36 = 2^2 \cdot 3^2$.

Determination of the list of all occurring prime factors: $\{2,3,5\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	5	=	2^{0}	•	3^{0}	•	5^{1}
Second number	36	=	2^2	•	3^{2}	•	5^{0}
Prime factor exponent			2 > 0		2 > 0		1 > 0
lcm	180	=	2^{2}	•	3^{2}	•	5^{1}

f) The lcm of 26 and 169 is $338 = 2 \cdot 13^2$.

The prime factorizations are: $26 = 2^1 \cdot 13^1$, $169 = 13^2$.

Determination of the list of all occurring prime factors: $\{2,13\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	26	=	2^{1}	•	13^{1}
Second number	169	=	2^{0}	•	13^{2}
Prime factor exponent			1 > 0		2 > 1
lcm	338	=	2^{1}	•	13^{2}

g) The lcm of 2 and 117 is $234 = 2 \cdot 3^2 \cdot 13$.

The prime factorizations are: $2 = 2^1$, $117 = 3^2 \cdot 13^1$.

Determination of the list of all occurring prime factors: $\{2,3,13\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	2	=	2^{1}	•	3^{0}	•	13^{0}
Second number	117	=	2^{0}	•	3^{2}	•	13^{1}
Prime factor exponent			1 > 0		2 > 0		1 > 0
lcm	234	=	2^{1}	•	3^{2}	•	13^{1}

www.dw-math.com

h) The lcm of 2 and 95 is $190 = 2 \cdot 5 \cdot 19$.

The prime factorizations are: $2 = 2^1$, $95 = 5^1 \cdot 19^1$.

Determination of the list of all occurring prime factors: $\{2,5,19\}$

Determine the lcm by selecting the highest power for each prime factor:

First number	2	=	2^{1}	•	5^{0}	•	19^{0}
Second number	95	=	2^0	•	5^1	•	19^{1}
Prime factor exponent			1 > 0		1 > 0		1 > 0
lcm	190	=	2^{1}	•	5^{1}	•	19^{1}

Good Luck!