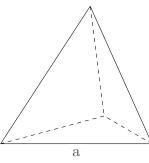
Worksheet

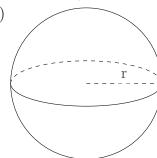
12/06/2020

Free on dw-math.com

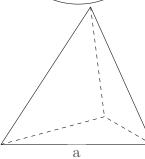

Problem quickname: 2200

1)

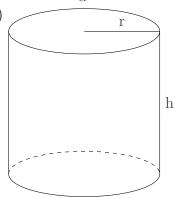
Quick: 2200


State the formulas for the required metrics of the given shape.

a)


This is a regular tetrahedron. All edges are of the same length with a=14 cm. The volume is: $V=\frac{a^3}{12}\cdot\sqrt{2}$ =323 cm³.

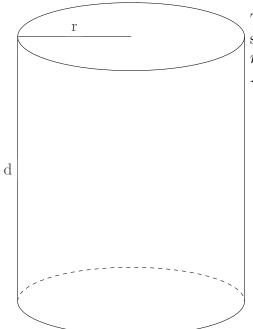
b)


This is a sphere. We have r=4 cm. The volume is: $V=\frac{4}{3}\cdot\pi\cdot r^3{=}267~{\rm cm}^3.$

c)

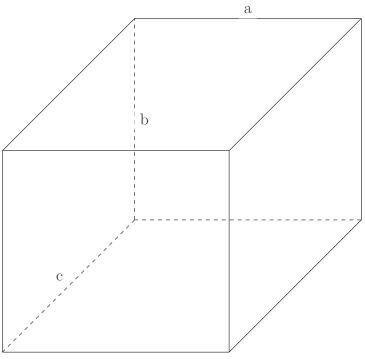
This is a regular tetrahedron. All edges are of the same length with a=15 mm. The surface area is: $A=a^2\cdot\sqrt{3}=389~\mathrm{mm}^2.$

d)


This is a cylinder. The base of this shape is formed by a circle. We have r=9 cm, h=17 cm. The volume is: $V=\pi\cdot r^2\cdot h{=}4323~{\rm cm}^3.$

<u>2)</u>

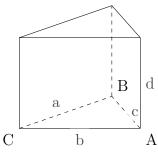
Quick: 2200


Calculate the approximate values of the shapes metrics a requested.

a)

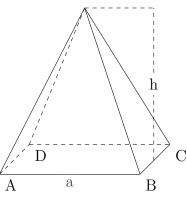
This is a cylinder. The base of this shape is formed by a circle. We have $r=6,\ d=14.$ The surface area is: $A=2\cdot \pi r^2+2\cdot \pi\cdot r\cdot d=754.$

b)

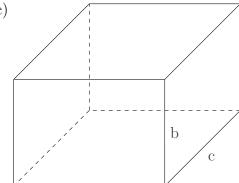

This is a cuboid. We have a=18, b=16, c=21. The volume is: $V=a\cdot b\cdot c=6048$.

3)

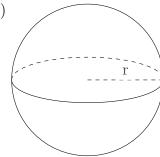
Quick: 2200


State the formulas for the required metrics of the given shape.

a)


This is a prism. The base of this shape is formed by a triangle ABC which has an area of A(triangle)=24 mm^2 . We have a=6 mm, b=8 mm, c=10 mm, d=6 mm. The volume is: $V = A(\text{triangle}) \cdot d = 144 \text{ mm}^3$.

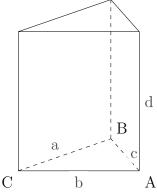
b)


This is a square pyramid. The base of this shape is formed by a square. We have a=13 mm, h=14 mm. The volume is: $V = \frac{1}{3} \cdot a^2 \cdot h$ =788 mm³.

c)

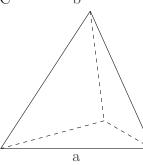
This is a cuboid. We have a=17 m, b=12 m, c=17 m. The volume is: $V = a \cdot b \cdot c = 3468 \text{ m}^3$.

d)


This is a sphere. We have r=17 mm. The volume is: $V=\frac{4}{3}\cdot\pi\cdot r^3$ =20569 mm³.

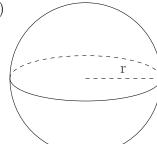
4)

Quick: 2200

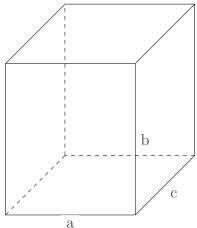

Calculate the approximate values of the shapes metrics a requested.

a)

This is a prism. The base of this shape is formed by a triangle ABC which has an area of $A(triangle)=6 \text{ cm}^2$. We have a=3 cm, b=4 cm, c=5 cm, d=4 cm 6 mm. The surface area is: $A = 2 \cdot A(\text{triangle}) + d \cdot (a + b + c) = 67$ $cm^2 20 mm^2$.


b)

This is a regular tetrahedron. All edges are of the same length with $a=1~\mathrm{cm}~4~\mathrm{mm}$. The volume is:


$$V = \frac{a^3}{12} \cdot \sqrt{2} = 323 \text{ mm}^3.$$

c)

This is a sphere. We have r=2 mm. The volume is: $V=\frac{4}{3}\cdot\pi\cdot r^3{=}33~{\rm mm}^3.$

d)

This is a cuboid. We have a=1 cm 2 mm, b=1 cm 4 mm, c=1 cm 1 mm. The volume is: $V = a \cdot b \cdot c = 1 \text{ cm}^3$ 848 mm^3 .

Good Luck!